26 research outputs found

    Comparing statistical techniques to classify the structure of mountain forest stands using CHM-derived metrics in Trento province (Italy)

    Get PDF
    In some cases a canopy height model (CHM) is the only available source of forest height information. For these cases it is important to understand the predictive power of CHM data for forest attributes. In this study we examined the use of lidar-derived CHM metrics to predict forest structure classes according to the amount of basal area present in understory, midstory, and overstory trees. We evaluated two approaches to predict sizebased forest classifications: in the first, we attempted supervised classification with both linear discriminant analysis (LDA) and random forest (RF); in the second, we predicted basal areas of lower, mid, and upper canopy trees from CHM-derived variables by k-nearest neighbour imputation (k-NN) and parametric regression, and then classified observations based on their predicted basal areas. We used leave-one-out cross-validation to evaluate our ability to predict forest structure classes from CHM data and in the case of prediction-based classification approach we look at the performances in predicting basal area. The strategies proved moderately successful with a best overall classification accuracy of 41% in the case of LDA. In general, we were most successful in predicting the basal areas of small and large trees (R 2 respectively of 71% and 69% in the case of k-NN imputation)

    Airborne Laser Scanning to support forest resource management under alpine, temperate and Mediterranean environments in Italy

    Get PDF
    Abstract This paper aims to provide general considerations, in the form of a scientific review, with reference to selected experiences of ALS applications under alpine, temperate and Mediterranean environments in Italy as case studies. In Italy, the use of ALS data have been mainly focused on the stratification of forest stands and the estimation of their timber volume and biomass at local scale. Potential for ALS data exploitation concerns their integration in forest inventories on large territories, their usage for silvicultural systems detection and their use for the estimation of fuel load in forest and pre-forest stands. Multitemporal ALS may even be suitable to support the assessment of current annual volume increment and the harvesting rates. Keywords: Airborne laser scanning, area-based approaches, individual tree crown approaches, forest management, timber volume estimation, multitemporal ALS surveys. Introduction Information about the state and changes to forest stands is important for environmental and timber assessment on various levels of forest ecosystem planning and management and for the global change science community [Corona and Marchetti, 2007]. Standing volume and above-ground tree biomass are key parameters in this respect. Actually, fine-scale studies have demonstrated the influence of structural characteristics on ecosystem functioning: characterization of forest attributes at fine scales is necessary to manage resources in a manner that replicates, as closely as possible, natural ecological conditions. To apply this knowledge at broad scales is problematical because information on broad-scale patterns of vertical canopy structure has been very difficult to be obtained. Passive remote sensing tools cannot help for detailed height, total biomass, or leaf biomass estimates beyond early stages of succession in forests with high leaf area or biomass [Means et al., 1999]. Over the last decades, survey methods and techniques for assessing such biophysical attributes have greatly advanced [Corona, 2010]. Among others, laser scanning techniques from space o

    A new generation of sensors and monitoring tools to support climate-smart forestry practices

    Get PDF
    Climate-smart forestry (CSF) is an emerging branch of sustainable adaptive forest management aimed at enhancing the potential of forests to adapt to and mitigate climate change. It relies on much higher data requirements than traditional forestry. These data requirements can be met by new devices that support continuous, in situ monitoring of forest conditions in real time. We propose a comprehensive network of sensors, i.e., a wireless sensor network (WSN), that can be part of a worldwide network of interconnected uniquely addressable objects, an Internet of Things (IoT), which can make data available in near real time to multiple stakeholders, including scientists, foresters, and forest managers, and may partially motivate citizens to participate in big data collection. The use of in situ sources of monitoring data as ground-truthed training data for remotely sensed data can boost forest monitoring by increasing the spatial and temporal scales of the monitoring, leading to a better understanding of forest processes and potential threats. Here, some of the key developments and applications of these sensors are outlined, together with guidelines for data management. Examples are given of their deployment to detect early warning signals (EWS) of ecosystem regime shifts in terms of forest productivity, health, and biodiversity. Analysis of the strategic use of these tools highlights the opportunities for engaging citizens and forest managers in this new generation of forest monitoring.Peer reviewe

    A new generation of sensors and monitoring tools to support climate-smart forestry practices

    Get PDF
    Climate-smart forestry (CSF) is an emerging branch of sustainable adaptive forest management aimed at enhancing the potential of forests to adapt to and mitigate climate change. It relies on much higher data requirements than traditional forestry. These data requirements can be met by new devices that support continuous, in situ monitoring of forest conditions in real time. We propose a comprehensive network of sensors, i.e., a wireless sensor network (WSN), that can be part of a worldwide network of interconnected uniquely addressable objects, an Internet of Things (IoT), which can make data available in near real time to multiple stakeholders, including scientists, foresters, and forest managers, and may partially motivate citizens to participate in big data collection. The use of in situ sources of monitoring data as ground-truthed training data for remotely sensed data can boost forest monitoring by increasing the spatial and temporal scales of the monitoring, leading to a better understanding of forest processes and potential threats. Here, some of the key developments and applications of these sensors are outlined, together with guidelines for data management. Examples are given of their deployment to detect early warning signals (EWS) of ecosystem regime shifts in terms of forest productivity, health, and biodiversity. Analysis of the strategic use of these tools highlights the opportunities for engaging citizens and forest managers in this new generation of forest monitoring.Peer reviewe

    Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission

    Get PDF
    NASA's Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI's footprint-level (similar to 25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI's waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerable variability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available

    Individual Tree Crown Segmentation in Two-Layered Dense Mixed Forests from UAV LiDAR Data

    No full text
    In forests with dense mixed canopies, laser scanning is often the only effective technique to acquire forest inventory attributes, rather than structure-from-motion optical methods. This study investigates the potential of laser scanner data collected with a low-cost unmanned aerial vehicle laser scanner (UAV-LS), for individual tree crown (ITC) delineation to derive forest biometric parameters, over two-layered dense mixed forest stands in central Italy. A raster-based local maxima region growing algorithm (itcLiDAR) and a point cloud-based algorithm (li2012) were applied to isolate individual tree crowns, compute height and crown area, estimate the diameter at breast height (DBH) and the above ground biomass (AGB) of individual trees. To maximize the level of detection rate, the ITC algorithm parameters were tuned varying 1350 setting combinations and matching the segmented trees with field measured trees. For each setting, the delineation accuracy was assessed by computing the detection rate, the omission and commission errors over three forest plots. Segmentation using itcLiDAR showed detection rates between 40% and 57%, while ITC delineation was successful at segmenting trees with DBH larger than 10 cm (detection rate ~78%), while failed to detect trees with smaller DBH (detection rate ~37%). The performance of li2012 was quite lower with the higher detection rate equal to 27%. Errors and goodness-of-fit between field-surveyed and flight-derived biometric parameters (AGB and tree height) were species-dependent, with higher error and lower r2 for shorter species that constitute the lowermost layer of the forest. Overall, while the application of UAV-LS to delineate tree crowns and estimate biometric parameters is satisfactory, its accuracy is affected by the presence of a multilayered and multispecies canopy that will require specific approaches and algorithms to better deal with the added complexity

    Using classification trees to predict forest structure types from LiDAR data

    Get PDF
    This study assesses whether metrics extracted from airborne Li-DAR (Light Detection and Ranging) raw point cloud can be exploited to predict different forest structure types by means of classification trees. Preliminarily, a bivariate analysis by means of Pearson statistical test was developed to find associations between LiDAR metrics and the proportion of basal area into three stem diameter classes (understory, mid-story, and over-story trees) of 243 random distributed plots surveyed from 2007 to 2012 in Trento Province (Northern Italy). An unsupervised clustering approach was adopted to determine forest structural patterns on the basis of basal area proportion in the three stem diameter classes, using a k-means procedure combined with a previous hierarchical classification algorithm. A comparison among the identified clusters centroids was performed by the Kruskall-Wallis test. A classification tree model to predict forest structural patterns originating from the cluster analysis was developed and validated. Between 18 potential LiDAR metrics, 11 were significantly correlated with the proportion of basal area of understory, mid-story, and overstory trees. The results coming from the agglomerative hierarchical clustering allowed identification of 5 clusters of forest structure: pole-stage (70% of the considered cases), young (15%), adult (24.3%), mature (24.3%), and old forests (30%). Five LiDAR metrics were selected by the classification tree to predict the forest structural types: standard deviation and mode of canopy heights, height at which 95% and 99% of canopy heights fall below, difference between height at which 90% and 10% of canopy heights fall below. The validation tree model process showed a misclassification error of 45.9% and a level of user’s accuracy ranging between 100% and 33.3% in the validation data set. The highest level of user’s accuracy was reached in the classification of pole-stage forests (100%), in which more than 82% of basal area is due to the understory-trees, follow by the classification of old forests types (63.5% of basal area due to the overstory-trees) achieved 76.5% of user’s accuracy. The model has provided moderately satisfactory results in term of classification performance: substantial room for improvement might be established by multi- or hyperspectral imaging that allow detailed characterization of the spectral behaviour of the forest structure type
    corecore